
Riverbed Cascade Shark Common REST API v1.0
Copyright © Riverbed Technology Inc. 2024

Created Jan 16, 2024 at 02:01 PM

Overview
This document describes version 1.0 of the Riverbed Common REST API as implemented by Cascade Shark
systems.

The Common REST API is used to obtain general system information and for authentication.

It is assumed that the reader has practical knowledge of RESTful APIs, so the documentation does not go into
detail about what REST is and how to use it. Instead the documentation focuses on what data can be accessed
or modified, how to access it, and how to encode requests and responses.

The Resources section lists the supported REST resources and the methods supported on these resources. For
each operation, the document describes what the operation does, the specific HTTP method and URL used, the
data types used for requests and responses (if any) and any required or optional URL parameters.

The Errors section lists the various error codes that may be returned from REST API operations.

Data Encoding
Most resources exposed by the API support both XML and JSON encoding for requests and responses. The
selection of the specific encoding is accomplished through the use of HTTP headers.

The Accept header should be included with all API requests, and it is used to control the encoding of the
response body. To specify XML encoding, the header should be set to Accept: text/xml, and to specify JSON
encoding, the header should be set to Accept: application/json. If the Accept header is omitted, the default
encoding is XML.

The Content-Type header must be included with all PUT or POST requests that include a request body. To specify
XML encoding, the header should be set to Content-Type: text/xml. To specify JSON encoding, the header should
be set to Content-Type: application/json.

Some resources support alternative content types for requests and responses, as identified in the specific
resource documentation below.

Authorization
This common API and other service-specific APIs support various methods of user authentication and
authorization.

BASIC (HTTP Basic Authentication): The username and password are passed using the Authorization HTTP
header in each request.

COOKIE (Cookie-based Session Authentication): A valid username and password combination are
transmitted in an explicit login request which returns a session identifier. Subsequent requests include this
session identifier as a HTTP cookie.

Resources

information: ping
Check availability of the system

GET https://{device}/api/common/1.0/ping

Authorization
This request does not require authorization.

Response Body
On success, the server does not provide any body in the responses.

information: list services
List the service identifier and version for the various API services available on this system.

GET https://{device}/api/common/1.0/services

[
 {
 "id": string,
 "versions": [
 string
]
 }
]

Example:
[
 {
 "id": "common",
 "versions": [
 "1.0"
]
 },
 {
 "id": "shark",
 "versions": [
 "3.2",
 "4.0"
]
 }
]

Authorization
This request does not require authorization.

Response Body
On success, the server returns a response body with the following structure:

Property Name Type Description Notes

services <array of
<object>> List of common services available on this Shark

services[service] <object> Description of an available service
services[service].id <string> Identifier for the service

services[service].versions <array of
<string>> Available versions for service 'id'

services[service].versions[version] <string>

information: get system information
Get basic information about the system, including version, model, and management addresses.

GET https://{device}/api/common/1.0/info

Authorization
This request does not require authorization.

Response Body
On success, the server returns a response body with the following structure:

JSON

JSON

{
 "sw_version": string,
 "hw_version": string,
 "device_name": string,
 "mgmt_addresses": [
 string
],
 "serial": string,
 "model": string
}

Example:
{
 "mgmt_addresses": [
 "172.16.222.131"
],
 "sw_version": "10.0.0000.0000",
 "serial": "N/A",
 "model": "vShark",
 "device_name": "my_shark"
}

{
 "username": string,
 "password": string,
 "purpose": string
}

Example:
{
 "username": "user1",
 "password": "MyPassWord",
 "purpose": "Logging in to test this Shark."
}

Property Name Type Description Notes

info <object> General information about this Shark
info.sw_version <string> Software version of this Shark

info.hw_version <string> Hardware version of this Shark (does not apply to Shark
VE) Optional

info.device_name <string> Host name for this Shark

info.mgmt_addresses <array of
<string>> Management IP addresses for this Shark

info.mgmt_addresses[address] <string>
info.serial <string> Serial number of this Shark
info.model <string> Model of this Shark

authentication: login
Authenticate to the system for session-based authentication. The response will include the information needed
to construct a session cookie, and will also include the Set-Cookie HTTP header.

POST https://{device}/api/common/1.0/login

Authorization
This request does not require authorization.

Request Body
Provide a request body with the following structure:

Property Name Type Description Notes

login <object> Login request information for a Shark session
login.username <string> The user account to log in with
login.password <string> The password of the given account

login.purpose <string> The stated purpose of the login session
Optional; Should only be included if
specify_purpose is enabled in the auth_info
structure

JSON

{
 "session_key": string,
 "session_id": string
}

Example:
{
 "session_key": "pilot_session_id",
 "session_id": "b9d2e3b2-32b7-11e2-b4da-000c29c8cc69"
}

{
 "supported_methods": [
 string
],
 "specify_purpose": boolean,
 "login_banner": string
}

Example:
{
 "supported_methods": [
 "BASIC",
 "COOKIE",
 "OAUTH_2_0"
],
 "specify_purpose": false,
 "login_banner": ""
}

Response Body
On success, the server returns a response body with the following structure:

Property Name Type Description Notes

login <object> Information available in response to a successful login
login.session_key <string> Cookie name used to identify the session

login.session_id <string> Unique session identifier ID Should be set as the value of the
'session_key' cookie

authentication: authentication info
Get information required to authenticate to the system.

GET https://{device}/api/common/1.0/auth_info

Authorization
This request does not require authorization.

Response Body
On success, the server returns a response body with the following structure:

Property Name Type Description Notes

auth_info <object> Information about authentication protocols

auth_info.supported_methods <array of
<string>> Available authentication methods

auth_info.supported_methods[method] <string> Authentication method Values: BASIC, COOKIE, OAUTH_2_0

auth_info.specify_purpose <boolean> Indication if the user should be prompted to include a
purpose with the login request

auth_info.login_banner <string> Banner to be displayed on login page

authentication: logout
Log out from the system. The request must include a session cookie and will invalidate that cookie for future
requests.

JSON

JSON

POST https://{device}/api/common/1.0/logout

Authorization
This request requires authorization.

Request Body
Do not provide a request body.

Response Body
On success, the server does not provide any body in the responses.

Error Codes
In the event that an error occurs while processing a request, the server will respond with appropriate HTTP
status code and additional information in the response body:

{
 "error_id": "{error identifier}",
 "error_text": "{error description}",
 "error_info": {error specific data structure, optional}
}

The table below lists the possible errors and the associated HTTP status codes that may returned.

Error ID HTTP Status Comments

REQUEST_INVALID_INPUT 400 The request is invalid
AUTH_REQUIRED 401 Missing authentication credentials
AUTH_INVALID_CREDENTIALS 401 Invalid user name or password
AUTH_INVALID_SESSION 401 The authentication session has timed out or is invalid
AUTH_EXPIRED_PASSWORD 401 Account password has expired
AUTH_INVALID_CODE 401 The Oauth access code is invalid
AUTH_EXPIRED_TOKEN 401 The Oauth token has expired
AUTH_EXPIRED_CODE 401 The Oauth access code has expired
AUTH_DISABLED_ACCOUNT 403 Account has been disabled
AUTH_FORBIDDEN 403 Account does not have privileges for this request
AUTH_INVALID_TOKEN 403 The Oauth token is invalid
RESOURCE_NOT_FOUND 404 The requested resource was not found

HTTP_INVALID_METHOD 405 The requested method is not supported by this
resouce

INTERNAL_ERROR 500 Internal error occurred

	Contents
	Overview
	Data Encoding
	Authorization

	Resources
	information: ping
	information: list services
	information: get system information
	authentication: login
	authentication: authentication info
	authentication: logout

	Error Codes

